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SUMMARY 

A theory of column chromatography is developed that includes the interaction 
of macromolecules with matrix-bound ligand and free ligand distributed throughout 
the column_ The theory differs from previous formulations in its exact treatment of 
chemical kinetics and mass transfer kinetics_ Characteristics of the elution profile - 
specifically the mean and variance- are expressed in terms of variables such as 
mobile phase velocity, bed height, ligand concentrations, mass transfer rate constants 
and chemical reaction rate constants. Equations are developed for monovalent and 
bivalent binding, for binding to ligands on porous and on impenetrable bed particles 
and for heterogeneous macromolecules_ Previous results for the profile peak appear- 
ing in the literature are shown to be special cases of the equations presented here, 
holding only when the rate constants satisfy certain constraints. Our results therefore 
broaden the range of applicability of chromatography for the study of macromolec- 
ular interactions and precisely define its limits with respect to the determinations of 
both thermodynamic and kinetic parameters. 

INTRODUCTION 

A number of recent theoretical and experimental advances have extended the 
applicability of aliinity chromatography to the quantitative study of macromolecular 
interactions, especially to the determination of enzyme-substrate affinities (e.g., ref. 1 
and references cited therein)_ The afBnities thus determined correspond closely to 
vaIu& obtained by more conventional methods such as dialysis, in which the reactive 
partners are uniformly dispersed in solution_ However, chromatographic methods 
yield two types of equilibrium constants, one for reaction between the protein (j-e_, 
the eluted macromolecule) and solution phase ligand and another for reaction bc- 
tween the protein and ‘bead-bound ligand. These are approximately the same’, as 
theory predicts= when the conformation of the ligand is unaffected by attachment to 
the bead. 
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In many biological systems, quantitative characterization of reactions between 
a solution phase molecule and a molecule bound to a surface (e.g., a cellular receptor 
or membrane enzyme) is of considerable interest_ Such reactions probably play an 
important role in the regulation of a number of cellular processes (see, e.g., ref. 3 and 
references cited therein)_ Although the equilibrium constant may be, to an excellent 
approximation, independent of whether a reactive partner is cell-bound or dispersed 
(barring a conformational dependence upon surface properties), rate constants will 
not be the same’*4_ Chromatography would seem to be a natural method for the 
determination of rate constants in both cases, simultaneously. Moreover, in many 
systems the molecules of interest are heterogeneous in their afiinities and in their rate 
constants for ligand, and a complete understanding of biological regulation requires 
quantitative characterization of the heterogeneity distributior?. 

Although several different methods of varying degrees of complesity are 
available for determining rate constants, equilibrium constants and their distri- 
butions, it is evident that a widely available, simple, fast and reliable method for 
obtaining all this information simultaneously would be very useful. In this paper we 
develop the initial stages of an approach to these problems by generalizing the basic 
theory of chromatography presented in our two previous paperss~g. 

Brielly, we consider a cylindrical column packed to a height iz with beads to 
which some ligand is covalently linked. The ligand is also uniformly distributed 
throughout the column. The beads may be either permeable or impermeable to the 
protein. The protein may be either homogeneous or heterogeneous in its affinity for 
the ligand. The analysis is confined to zonal chromatography in which the total 
volume of protein is very small compared to the column volume, and the initial 
concentration of protein is very low compared to the total ligand concentration. 

The theory is developed for proteins with one or two combining sites. We show 
that for penetrable heads. previously derived equations relating the peak of the profile 
to equilibrium constants’ are special cases of our results that are valid only when the 
rate of chemical equilibration is rapid compared to the rate of mass transfer equili- 
bration (movement in and out of beads), and when the elution profile is symmetric_ We 
also derive expressions for the dispersion in the profile and its relation to rate con- 
stants_ The relations between the profile dispersion and rate constants, in contrast to 
relations between the profile mean and equilibrium constants, are useful only when 
ligand-protein equilibration rates are slow compared to mass transfer equilibration 
rates. 

The possible masking of rate constants by movement in and out of beads 
suggests that the use of impenetrable beads will be advantageous for the determir 
nation of rate constants. We therefore present the theory for this case. We indic$e 
that the rate constants so obtained may differ substantially from those obtairjed in 
well-stirred solutions, even when the reaction mechanisms are identical. 

COMPETITIVE ELUTION WHEN LIGAND BINDS MONOVALENTLY TO SITES ON POROUS 

BEADS 

The model 

We now formulate an initial boundary value problem that models a small zone 
alfmity chromatography experiment with a single type of molecule in the sample. 
Some of the notation used here is the same as in ref. 8. 
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Consider a chromatography column of height h where x measures the distance 
from the bottom of the bed and 11 is the velocity in the mobile phase. Let P’,, be the 
void volume (the volume exterior to the beads) and let VP be the volume interior to 
the beads that can be penetrated by the protein molecule under consideration. 
Assume that the molecule to he studied binds only monovalently to the ligand. The 
concentration of free ligand in solution is L and the concentration of ligand that- is 
covalently attached to the beads and available for binding protein is N. 

Let pr(x, 1) and p2(s, t) be the probability density functions (per unit column 
length) at position s at time t that molecules are in the mobile phase and are unbound 
and bound to free ligand, respectively. Let q,(s, t), q&x-, c) and r(s. t) be the prob- 
ability density functions that molecules are inside the beads and unbound, bound to 
free ligand and bound to ligand covalently immobilized on the beads, respectively_ 
The rate constants for movement of protein in and out of the beads (i.e., mass 
transfer) are X-r and k_ I? respectively. For association and dissociation with free 
l&and they are k2 and k_2, and for association and dissociation with the bead-bound 
ligand they are k, and k_,. Equilibrium constants are defined by Ki = h-Jki_ The 
diagram below indicates the transfer rates between the five states: 

mobile phase itLL 

PI 

q1 

stationary phase 
I 

k,R’ k_, 
Y 

r 

The size and mass of the ligand are assumed to be small compared to those of the 
protein so that the protein mass transfer rates are unaffected when it binds solution 
phase ligand. 

Using a conservation of mass approach as described in ref. 8, we have derived 
the following system of reaction-convection partial differential equations for the 
probabilities: 

SPl 
- = ,,.g - k,p, + k_,q, 
St 

- k&p, i- x-_,pz 

c’p, 
2 = ii-z - k,p, + k_,qz+ kzLp, - k_lpz 
r’t 

- = k,p, - k_,q,- k2Lq, f it_?% - k,Nq, + ii_,r 
c”t 
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2% 
- = k,pz 
St 

- k-,q, + ktLs, - k-,q, (4) 

Sr 

at 
= k&q1 - k_,r 

These equations do not have diffusion-related terms since we have assumed that the 
flow-rate, F = uV,,jh, is large enough so that the effects of diffusion can be negiected’. 
We showed8 that the sorption-desorption (or mass transfer) equilibrium constant, 
K,, satisfies K1 = VJVO. 

The initial layer containing sample molecules at the top of the bed is assumed 
to be sufficiently small so that it can be considered an instantaneous source (small 
zone) given by a Dirac delta function. Thus the initial conditions are: 

PI{-K, 0) = 6(x - h) 

P2CG 0) = ql(.r, 0) = q.& 0) = r(x, 0) = 0 x # h 

Since there are no molecules at the top of the bed after the initial layer leaves, 

pl(h, 1) = p,($ t) = ql(h, Z) = q&z, t) = r(h, r) = 0 (7) 

for t > O_ The flow at the bottom of the bed where the elution profile u - p (0, t). is 
measured, is assumed to be the same as if the bed extended below x = 0. Thus we 
solve the initial boundary value problem on the semi-infinite interval (- x), /z)_ 

The mean of the passage time 
As in ref. 8, we use the model given by eqns. 1-7 to obtain an ordinary differen- 

tial equation for the mean and variance of the passage time_ The mean p-age time, 
T,(x), is defined as the mean time for molecules starting in the initial layer to move 
past a position x The mean elution time, M, = T,(O), is the mean time for molecules 
starting at _. = It to leave the bottom of the bed_ These definitions and those of higher 
order moments can be expressed formally a.!~**l~.~ ’ 

Z-&x) = 7 ii u&(x, i) t pz(x, r)]dt (8) 
0 

where T,i(x) is the jth moment of the passage time to position x. Although explicit 
solutions of the chromatography model in eqns_ 1-7 are not availabie to use in eqn. 8, 
we can still obtain expressions for the moments. In particular we show in Appendix I 
that the mean time satisfies 

K,K,N(k__,fk_~K,L - 
u(k_,fk_, + 1. + K,L) (1. +.K,L) 

- exp[ --B(h - s)/uJ (9) 
. - 
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where 

3 = (k_, t k,L)[I + k,/(k_, f k__? + kzL)] 

Integration of eqn. 9 from s to h gives: 

KlK3N(k-,/k_2)KzL 

-+ u(k, + k_, i- k-, + k&)(1 + K,L)’ 
-[* - exp(-IS.+)] (10) 

Thus the mean elution time is: 

Me = T,(O) = 
( 

1 f Kl + 
K,K,N h 

1 i- K3L >o 
- + 
Ii 

K,K,N(k_ ,/k_,)K,L 
i- u(k, A- k_, f k_-2 + k,L)(l + K,L)’ 

-[I - esp(-Hz/u)] (11) 

Desorption rate constants k_ 1 seem to vary from approximately 0.01 set- 1 for 
larger beads to approximately 100 set -l for small beads. The reverse rate constants 
such as k_, for chemical reactions may range from lo-’ to IO3 set-’ (ref. 12). Since 
chemical reaction kinetics may be much faster or much slower than sorption+iesorp- 
tion kinetics, we now consider these two limiting cases separately_ 

Fast chemical reactions 
If chemical reaction kinetics are fast compared to the movement of molecules 

in and out of the beads, then a reasonable approximation is obtained if we assume 
*hat chemical equilibrium is attained in the mobile phase 
In this case 

and in the stationary phase_ 

P = PI + PZ- PI = p/(1 f KJ), pz = pK,L/( I 

r 

+ K,L) (12) 

SK,L 

= 1 + K2L -I- K,N’ 

SK,N 

= 1 t K,L + K,N 
(13) 

so that the five partial differential eqns. l-5 reduce to the two following equations: 

C’P Sp 
- = I(-, - klp t 

k-,(1 + K&I 

dt CX 1 + K,L + K,N 

_s 
(14) 

ES 
= k,p - 

k-,(1 + K,L) 
-;_ 

1 i- K,L + K3N 

_s 

Gt 
(1% 
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Since this system of equations is analogous to that anaIyzed in ref. 8, we use the 
resuhs there to find that the mean, Ai_ and variance, S,, are: 

s, = Ix, 1 f K3N 
2.’ 

)i 1 -I- K& 

(16) 

(i7) 

Slow chemical reactions 
If chemical reaction kinetics are slow compared to mass transfer kinetics, then 

an approximation is obtained by assuming that mass transfer equilibrium is attained 
for the unbound molecules and for the molecules bound to free ligand. in this case 

g = pz f 92 
g 

Pz = 1 + KL q= = 1 + Kl (19) 

so that the five partial differential eqns. 1-5 reduce to the three following equations: 

Sf ?.I Sf k3NKl 
F 
et =ifK,‘s 

- k,Lf f k_,g - 1 f K -f + k_,r 
1 

sg 
T = 
ct 

1 :’ K, -g + k,Lf - k_,g 

Sr k,NK, 
r 
ct = 1 f SKI 

-f - k_,r 

(20) 

(21) 

(22) 

The mean of the passage time can be obtained for these equations in a manner 
analogous to the procedure used to obtain eqn. 9 from eqns. 1-5. Here we omit most 
details and give only a few intermediate results and the f3ral results. For notational 
simplicity we omit the limits on the integrals (0, CC) and the integration variable 
indicator dt. Integrating eqn_ 22 implies that: 

Integrating the sum of eqns. 20-22 yields: 

(23) 

E-- 11 JK -(f+-g)= 1 
1 

(24) 
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The moments of the passage time (eqn. 8) are now: 

Tj(s) = j; ?j crff i- g)/(l + K,)dr 
0 

lS9 

(25) 

Integrating r times the sum of eqns. 20-22 leads to 

d Tr (s) 
----= 

dx 
- J<f t g) - Jr 

= --_(I f Kl) Kl K3N - 
Li u(l i I&L) 

. [l - J&&+-wq 

where S = (k_, + k,f.)( 1 + K,). Integrating eqn. 26 from 0 to Iz yields: 

MC = T,(O) = 
( 

1 + I&+- lK;KKVL 
-N 

“+ 
2 14 

K, K,L K,iV 

+ (1 + Kl) fL(l + I&L)” 
-( 1 - e-Bh/u) (27) 

The second moment can be found by a procedure similar to that used in ref. S. 
Integrating t’ times the sum of eqns. 20-E yields: 

d T?(s) 2(1 i K,)T,(s) 2K, K+V 3Kr K,N -=- - 
ds 1 i- K, s 

if - 
s 
f 

II (1 + K,) k_; 
(W 

The variance S(s) = T,(s) - T:(s) satisfies: 

dS 2K, K,N 
z=- 

- 
(1 i- K,)k_, 

yiKK; fff + 2K,T,(s) Jt- 

Solving simultaneous differential equations similar to A6 and A7 leads to: 

(1 + K,)’ 1 t 
K, &IV 1 (1 + KJ( 1 f K&) 

22(1 f K2C~ 

(I’ - -‘I + 

zKlK3fvK3L _[I _ ,--B(h-x)/u] + 

+ ~(1 i- K2L)3k_, 

(99) 

i- 
K&(1 + KIN 1 + K&) f- KlK,NK2L]( 1 + Kl) 

rct(l f K,L)’ 
-(h - _+-B(k--x)iu (30) 



190 H_ W. HETHCO-FE C DeLISI 

Thus eqn_ 29 becomes: 

dS 2KrKJV [ K,K,hrK2L 
z=- (1 f K&t I(1 f K~Aq3k_, + 

(1 + K*)K,L 
k-,(1 f KJ) + 

f K,K3NK2L I?,( 1 f K&) - (1 -!- KzL)2k_2 1 . e-B(k--xtiu f WWWJ)2 
(I + K2L)3k_2 

_ e--2B(h-xMu 

> 

(31) 

Integrating eqn_ 31 from 0 to h, we l%nd 

+ 

KIK2L K,N 

(1 i- K,)k_,(I + K2L)’ 10 !+ 
I( 

K,L C 1 

-E k-,(1 f K,L)’ 
K,K,N -_ 

k_, (1 i- K,)k_Jl t K,L)’ 1 
(1 - ewB’““) + 

K,(K,L)‘K,N 

+ 2(1 i- K,)k_,(I + K2L)* k_, 
-(I - e - tBh!u) (32) 

where B = (Ll + k2L) (1 f K,)_ 
When there is no free ligand (L = 0), the mean and variance simplify signifi- 

cantly to: 

M, = (I -!- J$ + K,K,N)h/u (33) 

2KIK3iV Ir 
s, = x_ -- 

- 3 11 
(34) 

COMPETITIVE ELUTION WHEN MOLECULES BIND BIVALENTLY TO SITES ON POROUS 

BEADS 

Tile model 
In this section a model is formulated for a small zone affinity chromatography 

ejiperiment with a homogeneous popdation~ of molecules with two identical binding 
sites- IgG and IgA myeloma proteins fall into this category. The molecules can first 
bind monovalentiy and then bivaiently to the ligands. As before the concentration of 
free ligaud in the solution is L an+ the concentration of ligand that is covalently 
attached to the beads and avaiIab!efor binding protein molecules is iV_ 

Let p,(_r, t), pz(_v, I) and p3(x, I) be the probability density functions at point x 
at time t *&at a mole&e in the mobile phase has both-sites empty; one site bound to a 
free ligand and both sites bound to a fke ligand, respectively; Let q,(x,.t), q,(_r, I)-and 
q&v_ I) be the corresponding probability density functions for moleculea interior to a 
bead- Let rl(xV I). r&r, r) and r3(x7 t) be the probability density functions that a 
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molecule inside a bead has, respectively, one site empty and one bound to an attached 
l&and, one site bound to a free ligand and one bound to an attached ligand and both 
sites bound to attached ligands. The transfer rates between the nine states are in- 
dicated in the diagram below: 

mobile phase 

stationary phase * 

Z&L k,L 

PI < - l P1 <- P3 
k_, 

k-1 

, II 

at_, 

k, k, it-_, - k-, 
2krL x-,L 

91 + 92 
i 

2X-3N k-3 

IT 

k-, 2k_, 

- 

k,L 

5 < l r, 

II 
k-2 

k,N 2k_, 

r3 

The mass balance equations for this model are: 

ZPl 
_ 

- = U-2 - k,p, + k_,q, - &Lp, + k_,pz 
St 

(35) 

c?p, 
_ 

L = u -z - k,p, i- k-,q, + ‘k2Lp, 
St 

- k_,pl - kzLpz i 2k_zp3(36) 

C’P, 
- = U-Z - k,p, + k_,q, + kzLpz - 2k_lp3 
St 

(37) 

c’q, - = k,p, 
c^r 

- k_,q, - &Lq, i- k_,ql - 2k3rVq, + k-3r1 (38) 

-Z = k,p, - k_,qz + 2k,Lq, - k_,qz - k,Lq, + X_,q, - k3Nq, t k_,r2 
St 

(39) 

h3 
- = k,p, - k_,q, •!- k,Lq, - 2k_2q3 
Sr 

(40) 

c”r, 
- = 2k,Nq, - k_,r, - 
Pr 

k,Lr, f k_,rz - k,Nr, f 2k_,r, (41) 

&, 
-2 = k,Nq, - k_,r, f klLr, - k_?r2 
St 

(42 
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c’r, 
- = k,hrrl - 2/i_,r, 

_ St 
(43) 

The initial conditions, boundary conditions, definitions of moments and other as- 
sumptions are similar to those in the previous section. 

Fat chemical reactions 
If the chemical reactions are fast compared to the movement of molecules in 

and out of beads, then a reasonable approximation is obtained if chemical equilib- 
rium is assumed. In this case 

P-PI +Pz+P3*Pr =(I +pKzL)‘. 
PXJ 

Pr = (1 f f&L)” 

s E q1 f q2 + q, f rI + r, t r,, 

S 

91 = (I 

+ &L)’ + 2K3N(i + K2L) +_. K,NK,N 

(44) 

(45) 

ql = 2K,Lq,. q3 = (K2L)‘qIT rl = 2K3Nqr, r, = K,Lr,, r, = K,Nr,/2(46) 

so that the nine partial differential equations reduce to the foliowing two equations: 

Sp Y 

- = u-z - k,P f k-1 -(i i K,L)’ 
(1 -!- I&c)” 

Tr i 2K,N(1 -I- K2L) + K,NK,N -’ 
(47) 

SS 
= k,p - k._, - 

(1 + K+y 
_, 
Cl (1 -i- &L)’ + 2K,fJ( 1 t K,L) +- K,NK,N -’ 

(48) 

Since these differential equations are similar to those analyzed in ref. 8, we can use the 
results there to obtain: 

_?lr, = 1 + Kl + 
3KI K,N K,K,NK,N h 

I i- K2L + (I -I- K,L)’ 10 u 
(4% 

2K,N K,NK,N It 

1 + K,L i- (I + K,L)’ 10 ; 
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Without competing free &and 
If there is no competing free ligand (L = 0), then the nine differential eqns. 35- 

43 reduce to four differential equations for pl, q,, r1 and r3. For those equations, the 
usual procedure Ieads to: 

MC = (1 -i- Kr t 2KlK3N + K,K,NK,N) 
0 

5 
u 

(51) 

S, = 2K, 
(1 + 2K3N +- K,NK,N)’ 

k-, 

f 2K,N( 1 + K,N/2)’ + KsNK,N h 

k-3 x-4 10 - I( (52) 
AMONOVALENT BINDING TO LIGAND A-l-I-ACHED TO IMPENETRABLE BEADS 

The model here is similar to the first model described except that the beads are 
impenetrable and the ligands are covalently attached to their surfaces_ Consider a 
univalent protein and let pi(s, t), p&x-, t) and r(x, t) be the probability density 
functions that it is unbound, bound to a free ligand and has its site bound to a bead 
ligand, respectively_ The transfer diagram is: 

k,L 
PI < * P2 

II 

k_, 

k,iV k-3 

r 

The mass balance equations are: 

3% ___SP,_~Lp +k_p 
St z;_r -2 1 2 2 - k,Np, + k_,r 

SP, - 
SI 

= u-z -i- k&p, - kBzpz 

c”r 
- = X-,Np, - k_,r 
St 

(54) 

The eqns. 53-55 are similar to eqns. 20-22 so that we can convert the resuits there to 
obtain 

K,N >(> &LK,N 

1 +K,L 
‘1, 
tl k_z(I + KZL)’ -(l - e-“‘“) 

(56) 
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s, = 2&N 

[ 
1 K~LIQV 

I -I- K,L k-3 + k-,(1 -I- K2L)' 10 I+ 
u 

K,L 1 

i- k-=(1 -t- K&)= [ 

K3N -- 
I?_, 1 k_,(l -I- f&L) 

(1 _ e-W=) + 
(K,L)‘K,N 

+ X-,(1 + K2L)“k_, 
-(I - e - ‘Bh;“) (57) 

where B = (k_? + k,L). 
When there is no free competing ligand (L = 0), these expressions simplify to: 

2K,N h -_- 
‘= = k_3 LI 

(5% 

Denizot and Delaager3 
&ngr4 

used the random walk approach of Giddings and 
to develop a theory of affinity chromatography for monovalent binding of 

molecules to ligands. Their expression for the mean of the elution profile is 

mean = E(r’) = E( t,,) ( 1 + k/k’) (60) 

where I!?(&-,) is the expected elution time for a particle that does not bind, and k/k’ is 

the equilibrium constant of binding (K,N in our notation). For porous beads E(r,) = 
(1 + K,)h/rr so that eqn. 60 in our notation becomes: 

Me = (1 f K,)(i + K,A’)h/u (61) 

This is clearly not the same as eqn. 11, 16 or 27 with L = 0 so that their theory does 
not seem to be appIicabIe to porous beads. This is consistent with Chaiken’s’ finding 
of unrealistic rate constants when the Denizot and Delaage theory was applied to the 
elution of ribonudease through a bed of porous beads. The difficulty, as they indicate, 
is that their formulas assume that mass transfer in and out of the stationary phase is 
insignificant_ In fact, for impenetrable beads E&J = IZ/U so that eqn. 60 is the same 
as our result, eqn. 58. The expression of Denizot and Delaage for the variance is 

(62) 

where 4 is the variance of r,. For impenetrable beads E(t,) = h/u and CJ$ = 0 when 
the effects of diffusion are negiigible so that eqn. 62 in our notation becomes eqn. 59. 
Thus their results do apply to chromatography with impenetrable beads. 

It is important to reco_me3 however, that the forw_ard-and reverse. rate con- 
stants obtained when one of the reactants is attached to a large particle, such as.a 
bead or a cell, may differ by several orders of magnitude from the values obtained 
when both reactants are dispersed in sohrt.i~n”*~_ The_ differences are present when the 
reactions are diffusion limited and are consequences of thii-Brown&n-movement of 
ligand in the presence of a large &face (e.g., a bead)‘5_ An add[tional complication is 
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that in a column chromatography experiment, the reactions may be mediated by 
transport rather than diffusion. Ef this is the case, rate constants obtained by chroma- 
tography experiments would have to be interpreted entirely differently from rate 
constants obtained in well stirred solutions, and quantitative agreement between the 
two would be fortuitous and surprising. Nevertheless, rate constants obtained by 
chromatography, in which flow is a dominant process, may be more relevant to 
physiological situations where flow is also dominant, than well stirred solution data. 

BIVALENT BINDING TO LIGAND A-I-I-ACHED TO IMPENETRABLE BEADS 

The model here is simiiar to the second model described escept that the beads 
are impenetrable_ Using the same notation, the transfer diagram is: 

The mass balance equations for this model are: 

sp,=usp, 
St - cx 

- 2ktLp, + k_,p, - 2x-,Np, f k_,r, 

Sp, 
. 

2 = rt-3 f &Lp, 
2-r z_\- 

- k_,pz - klLp, + 2k_,p, - k31Vp, f k_,r, 

Cr, 
Sr 

= X-,Np, - k_,r, - klLr, i- k_,r, - k4Nr1 i- 2k_,r, ._ 

c’r, 
2 = kzLr, - k_,r2 -I- k,Npz-: k_,r= * .i 
Pt . . 

(63) 

(65) 

(66) 

(67) 

(68) 
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When there is no free Iigand (L = 0), these six equations reduce to three differential 
equations. Foliowing the preceding procedure, we find: 

Iti, = (1 i- 2KsN -I- K,NK,N)h/u (6% 

s 

c 
1 + K,N ; ‘K;w2] (k) + K3;_K4” -! 

u - .a 1t 
(70) 

PEe4KS AND MEANS OF THE ELUTION PROFILE 

Our theory of elution chromatography 8-g leads, when diffusion is negligible, to 
a mean elution time 1M, = (1 + K,)lz/u.where the equilibrium constant Kl = VJV,. 
Since the volume eluted up to time I is the flow-rate, F = V,,u/h, multiphed by the 
time t. our formula for the profile mean becomes V, = FM= = V. + VP_ This 
formula is formally the same as a standard formula for the peak of the eIution profile. 
The conditions under which this formula is applicable and comparisons of the peaks 
and the means are given in refs 8 and 9. 

Using the theory for monovalent bindin, 0 to &and immobilized in porous 

beads which assumes local equilibration of both mass transfer and chemical kinetics, 
Dunn and Chaikenr6 obtained the following important relation 

1 1 i- [LYK,_ 
v - If0 = 

( r’o - ~‘nJfLW/Kk, 

where Vis the peak of the elution profiIe, I’,-, is the volume at which the protein elutes 
in the absence of interaction (I lo + Ifi, in our notation), V, is the void voiume ( V0 in 

our notation), [LM] is the concentration of immobilized ligand (N in our notation), 

K= is the dissociation constant for interaction of protein with immobilized ligand 
( I/K3 in our notation)_ p] is the concentration of free Iigand (L in our notation) and 
K,_ is the dissociation constant for interaction of protein with free l&and (l/K? in our 
notation)_ Thus in our notation, their formuIa becomes: 

v= v, -?- VP f vp-l ?ZL . 2 

(71) 

Using eqn_ I 1 which is valid when diffusion is negligible, we 6nd that the profile mean 
as a function of eluted volume is 

V, = F&& = V&h M, = V,, + VP + VpK3N 

1 + K2L + 

K3N(k_,/k+)K2L 

-6 vp-(k, + A-__, -I- k_, + k,L)(l + K,L)’ 
- [I - exp( - Bh/u)] (72) 

whereB = (k_, i- k,L)[l f k,/(k_, +- k_, f k,L)]. For fast chemi&l reactions the 
expression for the mean V, found from eqn_ I6 is eqn_ 72 without the Iast term_ 
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1 10-a L(W) 1CP 

2.91 

Fig. i. flL) given by eqn. 71 is compared with the linear function E(L) given by eqn. 73 for h-_, = lo-’ 
and IO-* set-’ in a and b, respectively. 

The contribution of the last term in eqn. 72 is not easy to determine since it 
contains many parameters_ However. we can study the significance of this term for 
some typical parameter values. For fast chemical reactions the eqn. 72 without the 
last term can be manipulated to obtain the following linear function of L: 

E(L) = “P 1 Kz 
V, - ( P-0 f V,) =K,N+K,N. 

L (73) 

The analogous equation obtained from eqn. 72 is: 

Let A/U = lo3 set, k, = 0.02 set-‘, k_, = 0.01 xc-‘, EC2 = 10’ AC’, K3 = lo6 

M-', N = 10d6 M and let k_, take on the values lo-’ and 10-j xc-‘. Plots of E(L) 
and F(L) for these parameter values are given in Fig. I_ Notice that E(L) and F(L) 
both look like straight lines so that the apparent linearity of an observed curve does 
not imply that the approximation is valid. Although the intercepts of E(L) and F(L) 
are the same, the slopes are often different so that the approsimation 73 could give 
good estimates for K,N, but poor estimates of K=_ Since E(L) and F(L) almost coin- 
cide for k_? = 0.01 set-‘, the chemical reaction rates would be called fast for the 
above parameter values if k_? B 0.01 set- ‘. 

Since explicit solutions of the model in eqns. l-7 are not available, it is not 
possible to assess the difference between the peak and the mean as we did for elution 
chromatography in ref_ 9_ Of course, the peak and the mean are equal when the 
elution profile is symmetric and their difference increases as the elution profile be- 
comes less symmetric_ We conclude that the eqn. 71 is only a reasonable ap- 
proximation when diffusion is ne&ibIe, the chemical reaction kinetics are fast com- 
pared to the mass transfer kinetics in and out of the beads and the profile is nearly 
symmetric_ 
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EiIat er aLxl have used a similar local equilibrium model to derive ti formula for 
bivaIent binding to ligand attached to porous beads. In our notation their formula for 
the peak V becomes: 

2K,N (KS-W2 

1 -t- K2L +(I +KzL)’ 1 (75) 

Our formula 39, which assumes that diffusion is negligible and that the chemical 
kinetics are fast compared to the mass transfer in and out of the beads, becomes 

v,, = I’, + VP f 
X,N I&NK*iV 

1 -I- K2L +(l + K,L)’ 1 (761 

where ?‘, is the mean of the elution profile as a function of eluted volume. Thus when 
the rate constant restrictions delineated above hold, our results reduce to an expres- 
sion that is formally identical to the one derived by Eilat et ai.“. Aside from the 
distinction between K3 and K4 in eqn. 76, the only substantive difference between 
cons_ 75 and 76 is that the former involves the elution profile peak, whereas the latter 
involves the mean -a distinction that will be important when profiles are asym- 
metric_ 

ESTIMATING EQUILIBRIUM C0NSKAM-S FROM MEANS OF ELUTION PROFIlES 

A procedure for determining the mass transfer equilibrLm constant, K,, from 
the mean of the elution profile without chemical reactions was o-;liiined in the discus- 
sion in ref. S. We now outline a procedure for obtaining tht chemical equilibrium 
constants K2 and K3 for monovalent binding with porous beads. 

First. foliow the procedure in ref. 8. i_e_, determine a flow-rate, F, which is 
sufficient to guarantee that the effects of diffusion can be neglected and then find the 
mass transfer equilibrium constant Kl_ Here we assume that the beads are large 
enough so that the chemical reactions are fast compared to the mass transfer in and 
out of the beads. In the case of monovalent binding, measure I’.. for various values of 
L and calculate VP from V, and V,. By fitting a straight line to points plotted accord- 
ing to eqn_ 73, values of K,N and K2 can be estimated from the intercept and slope. 
The concentration, N, of ligand attached to the beads which is available for protein 
binding can be estimated by washing off molecules from saturated beads as in ref. 17 
so that KS can be determined from the value of &_N_ 

In the case of bivaIent binding, eqn. 76 can be converted to: 

v,--<v~+ VP)_ xyv K~lvK,N 

VP -l+K,L+(ltK,L) 
(77) 

The left side of eqn_ 77 obtained from data can be plotted as a function of L and then 
with K,, K3N and K,N as parameters, the best fit of eqn. 77 to the data points can be 
determined_ If N has been determined as above, then K3 and K4 can be found from 
the vaIues of K3N and K,N. 
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ESTIMATING RATE CONSTANTS FROM VARIANCES OF ELUTION PROFILES 

The dispersion or variance of the elution profile is due to factors such as 
diffusion, non-equilibration of mass transfer kinetics, non-equilibration of the chemi- 
cal reactions and velocity heterogeneity. We assume that the condition given in ref. S 
on the flow-rate, which guarantees that the contribution of mass transfer to the disper- 
sion dominates that of velocity heterogeneity and diffusion is satisfied_ 

The expressions derived in this paper for the variances of the elution profile 
involve not only equilibrium constants. but also rate constants so that it may be pos- 
sible to estimate rate constants from measured variances. The possibility of measuring 
rate constants by affinity chromatography was considered by Denizot and Delaage13; 
however, as noted here, their results are only applicable to impenetrable beads. If 
chemical reaction kinetics are fast compared to mass transfer kinetics_ then the prin- 
cipal contribution (see eqns. 17 and 50) to the variance involves the mass transfer 
rate constant, k_ ,_ Since the desorption rate constant k_ can be determined by 
elution chromatography, there does not seem to be any reason to determine k _ r by 
affinity chromatography. 

In order to determine chemical reaction rate constants such as I?_., from 
esperiments using porous beads, the chemical reactions must be slow compared to 
mass transfer kinetics. Foresample, A-_, could be determined for monovalent bind- 
ing from observed variances by using eqn. 34, assuming that K,, K,N. 11 and II have 
been measured previously_ If the chemical reactions are fast compared to the move- 
ment in and out of the beads, then it may be desirable to use impenetrable beads with 
the ligand covalently attached to the surfaces of the beads. In this case for mono- 
valent binding. k_, could be determined using eqn. 59 if K,iV. h and II have been 
previously determined. 

THE EFFECTS OF HETEROGENEITY 

The effects of heterogeneity in the size, shape and weight of the molecules and 
in the uniformity in packing. size and structure of the beads were discussed in ref. 9. 
Here we assume that the physical properties of the molecules and the beads are 
uniform. but the molecuIes are heterogeneous in their chemical reaction properties 
such as their affinity for ligand. This heterogeneity is usually due to a distribution of 
reverse rate constants_ Since we have assumed that the concentration of molecules is 
small so that the chemical kinetics are linear, it follows that molecules with different 
equilibrium constants behave independently and that an average moment is the sum 
over the distribution of the separate moments. 

For monovalent binding to ligands in porous beads. let n(K,, K3) be the prob- 
ability density function for the equilibrium constants KZ and K3. Define the average 
of thejth moment of the passage time as: 

F (s) = 3 3_ n(K,, K3) Lc t%rp(s, r; K2- K,)drdK?dK, 
0 0 0 

For fast chemical reactions the average mean and variance are: 

(78) 
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For K&. s 1 we find: 

1M, - (1 + K,)h/u 

J&h/~ 

(79 

Since Kz and K3 differ onIy in their diffusive parts, they are highly correlated so that 

(K3/K2) is approximately a constant- 
For K,L Q 1, we find: 

E - (I i K,)h/u 

K,h/u 
= F&N (81) 

Assuming K,, h and u are known, G couId be obtained from measurements of MC as 

a function of N by using cqn. 81. Assuming KI. k_,z h, u and K are known, the 

varianceK,” - K,’ of the distribution of K3 could be determined from measure- 

ments of g by using cqn. 82. Thus, both the mean and variance of the distribution of 
K3 can be obtained_ 
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APPENDIX I 

Dtlffenentia-al equation for rhe mean passage rime 

Direct integration with respect to f on the interval (0, cc) of eqn. 5 implies: 

5 r(x, t) dt = K,N 7 qr(_r, t) dt (Al) 
0 

For notational simphcity we omit in succeeding expressions the limits of integration 
and the integration variable indicator (dz). The simultaneous equations obtained by 
inte_ating eqns 3 and 4 and then using Al arei 
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--k,L 1 q, f (k_, f k-2) J qz = k, Jpz (A3) 

The solutions of eqns A2 and A3 are 

ISI = GP--2 j (PI + Pz) + k-1 1 PIllA 

1% = ~&bq~Pl + Pr) f k- 1 j PaA 

where A = k_, -I- k_, -I- k2L. 

(A41 

(A3 

The simultaneous ordinary differential equations obtained by integrating eqns. 
I and 2 and then using 6, A4 and A5 are: 

d 
24‘-& 

f 
pr = [k, t f&L - k&k_ r i- k_,)/A]jp, - (k_? + .iu,k_,/A)~p2 - 6(x- /I) (A6) 

- -_(k& + k,k,LfA)jp, + [k, + k_l - k,(k_, + k&)/A] j pz (A7) 

The sohrtions of these equations using eqn. 7 are 

JP, = 1 
~(1 f K7L) 

(1 + k,L - esp[ - B(/I - x)/u]) 

JPZ = t - IP1 

(AS) 

(A9) 

where B = (k-, + Xr,L)(I f k,/A)_ 
If the differential eqn. 5 is multiplied by t and integrated on the interval (0, xc.), then: 

k,NJfq, - k_, J Ir = -Jr (A101 

Integration oft times the sum of eqns. 3-5 leads to: 

k&P, + P3) - k-1 Jt(ql + 42) = - J(q* + 41) - fi (AI 1) 

If t times the sum of eqns. l-5 is integrated, then: 

g St MP, + P2) = - S(P, + PA - h + q_,) - jr (Al?) 

Eqn. 9 is obtained by using eqns. 8, Al, A4, A5, AS, A9 and A12. 

REFERENCES 

I I. LM. Chiicen, Anuf. Biochenz., 97 (1979) 1. 
2 C. DeLisi and F. W. Wiegel, Proc. tVar_ Acd Sci. U.S.. 78 (1951) 5569. 



202 H. W. HETHCOTE Cm D&IS1 

3 C_ D&it% and R Blumenthal (Editors), Physkal Chemistq of Cell Sar-ce Erents and Cellubr Regu- 
IaGm_ Ekevier_ New York. 197X 

4 c_ D&k& Mol. 1 mmwzofqy, 1s (I9SI) 507. 
5 T_ P_ We&En and G_ W. Siskind, I mmrmo&m~rry, 9 (1972) 987. 

6 k K- Thakur and C. DeLisi, Biopofyners, 17 (1978) 107.5 
7 C. DeLisi_ Bio&rmers_ 17 (197’8) 138% 

S H- W_ Hethcote and Cm DeLisi; 1. Chromarogr., 240 (1982) 269. 
9 C- DeLisi, H. W_ Hethcote and J. W. Brett& J. Chromarogr., 240 (1982) 283. 

10 C- DeLisi and H. Hethcote in T. C. J. Gribnau. J. Visser and R. J. F. Nimrd (Editors). Affniry 
Chromarogmphy and Reiared Techniques (Proc. 4th Inr. Svnp.. Veidiwren. lib NeUierkunir, June 22-26. 
I98i: Arnz~~~~ccl Chemisrry Sjmposia Serik. VoL 9). EIsevier. Amsterdam, Oxford, New York. 1982. p_ 
63. 

I I G. Weiss, in I. Brigogine (Editor). F-1 Passage 77m.es in Chemical Physics (Adrances in Chemical 
Physics. VoL 13). Wiley. New York. 1967. p_ I_ 

12 I. Pecht and 0. Lancet. in I. Pecht and R_ RingIer (Editors), Chemical ReIavurion in Molecular 
BioZq_r. Springer. New fork. 1977. 

13 F. C. Denizot and M. A. DeIaage. Proc. Xat. Acad_ Sci. U.S., 72 (1975) 4840. 
14 1. C. Giddin_es and H. Eying, J_ Amer. Chem. Sot.. 59 (1956) 416. 
IS H. C. Berg and E. M_ Purcelf, Biop/ys_ i.. 20 (1977) 193. 
16 B. Dunn and I_ M_ Chaiken. Biochemisrry. 14 (1975) 2343_ 
17 D. EiIat. I. M. Chaikcn and W. hi. McCormack, Biochemirtq-. IS (1979) 790. 


